
P H Y S I C A L R E V I E W V O L U M E 1 3 4 , N U M B E R 4A 18 M A Y 1 9 6 4 

Mechanism of the Ferrimagnetic to Antiferromagnetic Transition in Mn2_a;Cra;Sb 
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The mechanism of the first-order ferrimagnetic to antiferromagnetic transition (exchange inversion) in 
Mn2_xCra;SbJ x<0Al, was investigated by exchange magnetostriction. A second-order term has been 
included in the strain energy which gives an effective elastic constant dependent on magnetization and 
magnetic ordering. I t also introduces a discontinuous change in the magnetization at the transition and 
hence a contribution to the entropy change in addition to that caused by the change of lattice dimension. 
For Mn2_a;Cra;Sb, the effect of this term is small but necessary to obtain the qualitative behavior of the 
discontinuous change in lattice dimension and the shift in the Curie temperature with composition. The 
anisotropy behavior of Mn2_a;Cra;Sb was investigated for various values of x, and it is shown that an aniso-
tropy in the critical lattice dimension of only 4X10-~4A accounts for the observed change in magnetic 
anisotropy with exchange inversion that occurs for transition temperatures between 200 and 350°K. For 
transition temperatures above 350°K, anisotropy is positive, and spin-flopping measurements can be made 
on the antiferromagnetic state. An expression for the critical field in the presence of exchange inversion is 
obtained and compared with experiment. 

INTRODUCTION 

TH E basic features of exchange inversion have been 
investigated theoretically by Kittel.1 In this 

paper Kittel's theory is extended to include Curie-point 
shifts, magnetization, entropy, and magnetic anisotropy 
and is applied to Cr-modified Mn2Sb. Kittel proposes 
that a transformation from ferromagnetic (F) to anti
ferromagnetic (AF) spin ordering will take place by a 
first-order process when there is, during normal thermal 
contraction, a critical lattice dimension cc at which the 
sign of the exchange interaction changes from F to AF. 
Accompanying the first-order transition is a discon
tinuous change in dimension of the crystalline unit cell. 
The magnitude of the discontinuous change, as Kittel 
has pointed out, is equal to the difference between the 
magnetoelastic expansion of the ferromagnetically 
ordered lattice and the contraction of the antiferro-
magnetically ordered lattice. Experimental data that 
have been obtained support qualitatively the essential 
features of this theory. 

The ternary composition Mn2_a;Cra;Sb is an ideal 
magnetic material on which to check semiquantita-
tively the features of an exchange-inversion theory. 
Mn2Sb forms sets of 3-layer sheets2 of strongly coupled 
spins (J/k^450°K); the spins between sets are only 
weakly coupled by exchange forces ( J / ^ ^ 8 0 ° K at the 
Curie temperature). The net saturation moment of this 
3-layer set is approximately 0.9 Bohr magneton.3 We 
shall assume that detailed knowledge of the interatomic 
exchange forces is not needed and that this 3-layer set 
may be replaced with a single plane of spins strongly 
coupled ferromagnetically. Effects of magnetoelastic 
energy within this plane will also be neglected. 

Thus, the model representing Mn2Sb is a stack of 
weakly coupled ferromagnetic planes, the interplanar 

* Contribution No. 830. 
1 C. Kittel, Phys. Rev. 120, 335 (1960). 
2 L. Heaton and N. S. Gingrich, Acta Cryst. 8, 207 (1955). 
3 C. Guillaud, thesis, University of Strasbourg, 1943 (un

published). L. Neel, Ann. Phys. 3, 137 (1948). 

exchange changing sign at some accessible lattice 
dimension. A main function of the Cr modifier is to 
provide an initial lattice contraction so that, depending 
on the amount present, the critical lattice dimension 
for exchange inversion occurs at some temperature 
below the Curie temperature. 

FREE ENERGY 

In order to account for the exchange energy depend
ence on lattice dimension, the exchange energy is 
expanded in a Taylor series to quadratic terms about 
the critical lattice dimension cc at which the exchange 
energy vanishes: 

/ ( c ) = p ( c - c 0 ) + ( p , / 2 ) ( c - ^ (1) 

Here p and p' are the first and second derivatives of the 
exchange interaction evaluated at cc. This expansion for 
the exchange energy is identical to that used by Kittel 
except that he considered only the linear dependence 
of / on lattice parameter. 

When the elastic energy %R(c—CT)2 is included, the 
interplanar free energy per unit volume becomes 

F/V=iR(c-cT)* 
— [pfc— ce)+(j>'/2)(c—cc)

2]miw2 cos^. (2) 

Here, R represents the elastic constant divided by the 
square of the average lattice dimension, and CT is the 
lattice dimension in the absence of magnetic forces. 
The parameter nti is the reduced sublattice magnetiza
tion obtained by normalizing the magnetization to the 
saturation value Mo at absolute zero. 

The equilibrium value of c is given by dF/dc=0, 
which yields 

r p,mim2 T 

L R J 
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and, upon substitution into the free energy, Eq. (2), we 
obtain 

F 

VR 

l/pmim2\
2 

cos2<j> mitn2(cT—cc) 
R . A — ; 

v p i i r pfm1m2 " ] _ 1 

X H (CT— Ce) COS0H 1 COS0 (4) 

Both the elastic energy and the second term in the 
exchange energy appear quadratically. A quadratic term 
in the exchange produces an effective elastic constant 
that is dependent on the spin orientation. 

The condition for a transition to occur between F 
and AF spin configurations is no longer CT=CC of the 
Kittel theory but is readily obtained by equating the 
free energy for F ordering to the free energy for AF 
ordering to give 

CT—C -H-f-nn- (5) 

This expression reduces to the Kittel condition when 
p' = 0, and approaches the Kittel condition as the 
exchange-inversion temperature approaches the Curie 
point, where the sublattice magnetization is small. We 
now obtain from Eq. (3) the difference in interplanar 
spacing Ac between the F and AF states, 

Ac = c¥-cAF-
2pm\m2 

Rll~(p/m1m2/R) 
-\l+P-(cT-cc)\ (6) 

Substitution of Eq. (5) for the transition condition gives 
the discontinuous change in lattice dimension at the 
transition 

2pmim2r /p ,WiW2\2~l_ 1 / 2 

-)] • (7) Acs = -
R H R 

which is similar to the Kittel theory but is modified by 
the quadratic exchange term. 

So far, this development has paralleled that of Kittel, 
but the results given demonstrate how the quadratic 
exchange term alters related conditions of the linear 
exchange theory. These expressions will also be neces
sary when attempting a fit to the experimental data 
using p/R and p /R as adjustable parameters. 

The free-energy expression, Eq. (4), is not complete, 
since the intraplanar exchange energy Jm2 and magnetic 
ordering entropy S have not been taken into account. 
Therefore, the following terms must be added to 
Eq. (4): 

- {Ji/2)m1
2~ {J2/2)m2

2-kTS1-kTS2, (8) 

where the classical entropy for N spins4 with reduced 

moment m is given by 

a— 
2 

for each sublattice, 

K l+m\ /±+m\ /\ — m\ /l — m\"i 

—M—)+(—M—)] 
ENTROPY CHANGE 

Addition of the terms (7) to Eq. (4) gives the total 
free-energy expression of the system including, in a 
rather disguised form, the lattice entropy. This fact 
may be demonstrated by differentiating the free energy 
with respect to temperature and taking the difference 
between the total entropy for F ordering and AF 
ordering. At the transition, given by the condition of 
Eq. (5), we obtain 

dm Ac 3CT1 

~+— • (9) 
dT 2 dTJ 

r y 1 , 
AS=-RAc\ 

LR m 

Thus, the change in entropy of the lattice at the 
transition is included in the dimension CT* The first term 
in the bracket of Eq. (9) is of interest as it represents 
the magnetic contribution of the effective elastic energy 
to the change in entropy. Magnetization terms do not 
enter otherwise in Eq. (9) because the sublattice 
magnetization is assumed to be unchanged at the 
transition.8 The magnitude of the first term of Eq. (9) 
at room temperature is of the order 

1 p' 1 dm Ac 0.3 /0.03> 
«—(0.0015)[ 

2 R m dT c 2 

/ 0 . 0 3 \ 
= 10-6/°K 

for Mn2Sb, while 

1 dcr 

c dT 
; 2 0 X I O - 6 / ° ; K , 

and hence the first term is negligible. Therefore, the 
change in entropy at the F /AF phase transition arises 
largely from the lattice distortion and becomes 

/Ac\ / l dcT\ 

where C is the appropriate elastic constant in the 
direction of the strain Ac/c. 

MAGNETIZATION 

Minimization of the free energy, Eq. (4) plus (8), 
with respect to the sublattice magnetization and 
rearrangement of terms gives 

tmMo 
w = t a n h { H, 

I kT 
1 

w f , 
(11) 

4 J. S. Smart, Phys. Rev. 90, 55 (1953). 
5 A. E. Austin, E. Adelson, and W. H. Cloud, Phys. Rev. 131, 

1511 (1963). 
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where 

2R /J (/pm\2/ p'm2 \ 
Hw= ( - + ( — ) ( 1 cos<£ 

NMo\R [ \ R / \ 2R / 

+ (CT — Cc)\ P~\ {CT-Cc) COS<M 

X 1 cos0 j . (12) 

I t has been assumed in Eq. (12) that the two sublattices 
are equivalent and that Ji^J^ The magnetization 
given by Eq. (11) is actually the Brillouin function for 
spin ^. This form arises because the entropy expression 
assumes only two spin orientations. The first term of 
Eq. (12) represents the Weiss field due to intraplanar 
exchange, while the second term is due to interplanar 
exchange and, it is important to note, is dependent on 
the spin configuration through the cos<£ term. If the p 
term were not included, the cos<£ dependence disappears, 
and there is no difference in the Weiss fields for F and 
AF ordering at the transition. 

Thus, the magnetization is discontinuous at the 
transition because of the second-order p' term. However, 
even for fairly large values of p /R^\, the discontinuous 
change of sublattice magnetization is of the order of a 
few percent and would be difficult to detect by neutron 
diffraction, for example. A large change in sublattice 
magnetization would alter all previously derived 
expressions, but for practical purposes we may ignore 
the small change in magnetization as long as p'/R<\. 
This restriction is no stronger than the initial assump
tion that the exchange energy dependence on lattice 
dimension can be represented by Eq. (1). 

CURIE TEMPERATURE 

Also contained in Eq. (11) is the unusual effect of a 
temperature-dependent Weiss field. In most molecular 
field treatments it is assumed that exchange interactions 
are constant over the entire temperature range below 
the Curie temperature. In exchange inversion, however, 
the exchange interaction is dependent on temperature 
through lattice contraction. Such effects should, there
fore, influence the Curie temperature. 

The Curie temperature for the magnetization ex
pressed by Eq. (11) is 

R \ r P pf - i i J 
Tc=—\ (cTc-cc)\ ~+-—(cTc-cc) cos* + — , (13) 

Nk\ LR 2R J J Nk 

where {CTC—CC) indicates that (CT—CC) is to be evaluated 
at Tc. We thus have a self-consistent equation in which 
Tc is contained explicitly on the left-hand side and 
implicitly on the right-hand side of Eq. (13). The second 
term J/Nk in Eq. (13) represents the Curie temperature 

of the ferrimagnetically ordered 3-layer set of planes, 
while the first term is the interplanar Curie temperature. 
The Curie temperature is dependent on cos*. For 
positive p the Curie temperature for F ordering is higher 
than the Curie temperature for AF ordering by twice 
the interplanar exchange energy. Thus, as temperature 
is decreased, ferromagnetic ordering first occurs and is 
the most stable configuration. 

APPLICATION TO Mn2Sb 

In this section, the foregoing model is applied to 
Cr-modified Mn2Sb.6 I t should be emphasized that the 
foregoing expressions represent a single composition 
whose F /AF transition occurs at a temperature Ts. In 
applying such a model to M n ^ C r ^ S b for various 
values of x, in which Ts varies with chromium content, 
one must investigate whether the behavior of all 
compositions can be represented by a model whose 
parameters are independent of composition, and yet 
whose thermodynamic quantities exhibit the observed 
functional dependence on composition. 

Compositional changes are introduced into the func
tion (CT—CC) by assuming that the temperature depend
ence of CT remains the same as that of Mn2Sb, but that 
the modifying element (chromium) reduces the absolute 
value of CT. Thus, the requirement on the modifying 
element is that the lattice contraction introduced by it 
is just the amount required to satisfy Eq. (5) at the 
transition temperature Ts. 

There are probably some deviations from this 
assumption at high chromium content, but the theory 
is not quantitative enough to warrant consideration of 
such deviations. At this point, we must mention a 
metallurgical property of this material. An increase in 
the value of x does not represent a proportional decrease 
in the value of CT> I t has been found that the chromium 
tends to segregate into an ever-present MnSb 
Widmanstatten precipitate,7 and there is not a corre
sponding increase of chromium content in the Mn2Sb 
phase proportional to the amount introduced into the 
melt. I t must therefore be assumed that the transition 
temperature Ts occurs when Eq. (5) is satisfied and 
that the chromium in Mn^^Cr^Sb has introduced just 
the reduction in CT required to satisfy Eq. (5) at Ts. 

We shall also assume that cc is constant throughout 
the entire range of transition temperatures. The value 
of cc is critical only when calculating the F and AF 
lattice parameters for a given transition temperature. 
Otherwise cc always appears in the expression (CT—CC) 
and, if this difference can be obtained, cc needs to be 
known only approximately. A third assumption is that 
the magnetization of the sublattice of our model is given 
by the measured magnetization rather than by Eq. (11). 
As has already been discussed,5 the spins of the 3-layer 

6 F. J. Darnell, W. H. Cloud, and H. S. Jarrett, Phys. Rev. 130, 
647 (1963). 

7 J. D. Wolf and J. E. Hanlon, J. Appl. Phys. 32, 2584 (1961). 
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sets of atomic planes remain ordered antiparallel and 
appear to be strongly coupled by exchange forces. We 
assume, therefore, that the details of the magnetization 
behavior of Mn I and Mn n ions within this plane do 
not contribute to exchange inversion except through the 
temperature dependence of the magnetization of the 
entire 3-layer set. One would not expect that Eq. (11) 
should represent the magnetization of Mn2Sb. On the 
other hand, the conclusions drawn from Eq. (11) by use 
of the Weiss field is semiquantitatively correct even 
though the functional form is not. This functional 
dependence arose because we have used classical 
statistics in the magnetic entropy and assumed only a 
single sublattice. 

To obtain the parameters p/R and p'/R, consider the 
discontinuous change in the c lattice parameter given 
by Eq. (7). The elastic constant R does not need to be 
known until absolute energy comparisons are made. The 
best fit to Acs is given by p/R=0.02 A and p'/R=0A. 

TRANSITION TEMPERATURE, 'K 

FIG. 1. Discontinuity in c axis as a function of transition 
temperature Ts. Experimental results (Ref. 6) are shown by the 
open circles. 

Within the limits of experimental error, the value of 
p/R is not too critical. For example, a 0.1 variation in 
p/R can be tolerated and still obtain a fit with the 
experimental data. The value of p/R is more critical 
for only 0.001 A variation can be tolerated here. This 
fit of experimental data to the theoretical equation is 
shown in Fig. 1. Since the introduction of chromium 
reduces both Tc and the saturation moment, the 
magnetization of Mn2Sb cannot be used in Eq. (7). 
Instead, the magnetization measured at T=TS of that 
composition whose F /AF transition temperature is Ts 

is used. This magnetization is lower than the magnetiza
tion of Mn2Sb at the corresponding temperature. 

We may now obtain the temperature dependence of 
(CT—CC) for unmodified Mn2Sb. From Eq. (3) we obtain 
CF, the dimension of the unit cell for ferromagnetic 
ordering at 0 = 0 . Rearrangement of terms gives 

(cT-ce)= (cF-cc)[l- (p'/R)m*]- (P/R)m\ (14) 

0.055 . , ^ , , . , 
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FIG. 2. Dimension (CT—CC) as a function of temperature 
calculated from the thermal contraction of Mn2Sb. 

where the values of the magnetization to be used in 
Eq. (15) are those of Mn2Sb. I t is seen in Eq. (14) that 
cc must be known. The experimentally measured lattice 
dimension of Mn2Sb is CF. The value of cc within reason
able limits does not affect appreciably the empirically 
determined temperature dependence of (CT—CC). Selec
tion of the value of c c= 6.506 A is discussed later in the 
paper. Figure 2 shows the temperature dependence of 
(CT—CC) obtained from Eq. (14). 

The change in entropy may now be calculated by use 
of Fig. 2 and Eq. (10). The value of the entropy is 
dependent only on the rate of change of CT with tem
perature. The calculated change in entropy is shown in 
Fig. 3 in units of the elastic constant. Agreement with 
the experimentally measured AS given by the open 
circles is good, if it is assumed that the elastic constant 
C is 4.7XlO12 ergs/cm3. Some experimental values8 of 
AS in units of the elastic constant are shown for com
parison. Such agreement is also indicative of the validity 
of the assumption that the temperature dependence of 
CT is nearly independent of chromium content. We have 
been unable to measure an elastic constant along the c 

T 1 r 

0 100 200 300 400 

TRANSITION TEMPERATURE, -K 

FIG. 3. Entropy change versus transition temperature. The data 
of Flippen (Ref. 9) are shown for comparison. 

8 R . B. Flippen and F. J. Darnell, J. Appl. Phys. 34, 1094 
(1963); W. A. Doerner and R. B. Flippen (to be published). 



A946 H . S. J A R R E T T 

axis because of the severe cracking normal to the c 
direction that always accompanies samples large enough 
for ultrasonic measurements. The value required for C 
is comparable to Cn of tungsten, which is large com
pared to that of most materials, but not improbable. 
The few measurements that have been taken to deter
mine the elastic constant by ultrasonic methods have 
indicated that the elastic constant is greater than 
3X1012 ergs/cm3, which is, at least, consistent with the 
required value from the entropy data. 

The Curie temperature is obtained from Eq. (13) as 
a function of Ts. I t must be remembered that a different 
(CT~CC) curve is required for each chromium composi
tion. The new (CT—CC) is found by reducing CT by the 
contraction of the Mn2Sb lattice introduced by the 
chromium. The temperature which satisfies the equality 
in Eq. (13) is the Curie temperature for the composition. 
The Curie temperatures for various ternary composi
tions were thus calculated from the experimentally 
determined lattice contractions and the results are 
shown in Fig. 4 plotted against the associated F /AF 
transition temperature Ts. The measured Curie tem
peratures are included for comparison. 

For the foregoing calculation the intraplanar ex
change energy must be known. From the measured 
Mn2Sb Curie temperature J/Nk is found to be 470°K 
by subtracting the value of the first term for Mn2Sb 
on the right-hand side of Eq. (13). Actually an unknown 
parameter is introduced by the scale factor R/Nk, which 
converts elastic energy to temperature units. Our model 
compresses the 3-layer set of planes into a single layer. 
Therefore, the effective density N of the magnetic ions 
is not known, and the value we select for N influences 
the value of the intraplanar Curie temperature. How
ever, N cannot be varied widely because the Tc calcu
lated for the modified Mn2Sb materials would deviate 
widely from the experimentally measured values. There 
is no real advantage gained in making a least-squares 
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fit, so the density of magnetic ions in the 3-layer set, 
6.2X1022/cm3, is selected as the density N of ions for 
the model. The effective value of R is obtained from the 
change in entropy, Eq. (9), and the scale factor is 
R/Nk=1.5XW°K/k2. 

The parameters which have been evaluated allow 
calculation of the sublattice magnetization from Eq. 
(11). The sublattice magnetization for (CT—CC) given 
in Fig. 2, which would correspond to unmodified 
Mn2Sb, is essentially a Brillouin function with / = J . 
For (cT—CC) modified to give r s > 0 ° K , the sublattice 
magnetization differs slightly from the unmodified 
(CT~ CC) because of the reduction of Curie temperature, 
but the shape is still essentially a Brillouin function. 
The calculated discontinuity in M for T*=300°K is 
only 0.8%. There is little agreement between the 
experimental and the theoretical magnetization com
pared to the rather remarkable agreement in the fore
going calculations. This result is to be expected, of 

200 300 400 
TRANSITION TEMPERATURE, *K 

FIG. 5. Reduction of the ferromagnetic lattice dimension 
with increasing Ts. 

course, since the functional form of the magnetic 
entropy is based on a molecular field model of a single 
sublattice. 

A value for cc has been used in the foregoing calcu
lations, but its derivation has not been established. The 
expression for CF is obtained from Eq. (3) for <£=0 and 
m=mSy the measured value of the magnetization at T8. 
The lattice contraction in the F state due to the intro
duction of chromium is then given by 

ACF=-
CT—Cc+(p/R)m* 

\-(p'/R)m* 
+-£«-£* (Mn2Sb) 

FIG. 4. Dependence of Curie temperature on F/AF transition 
temperature. Experimental results (Doerner and Flippen, to be 
submitted) are shown for comparison. 

and is shown in Fig. 5 with the experimental points 
obtained from Fig. 1 of Darnell et al.Q 

The value of cc was selected to fit the low Ts mate
rials. I t is seen that deviations by a factor of 2 occur 
for high Ts materials, which indicates that our initial 
assumptions about the passive role of the chromium 
may not be entirely valid. Either ce is not constant over 
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the range of transition temperatures or the temperature 
dependence of cT changes at high chromium content. 
However, in view of the success of the theory which 
assumes the functional form of CT is not changed with 
the addition of chromium, it seems more probable that 
cc is not constant. 

ANISOTROPY 

The anisotropy energy has not been taken into 
account in the foregoing treatment. On the whole, the 
anisotropy energy is 1 to 2 orders of magnitude smaller 
than the smallest exchange interaction, and its inclusion 
has not been necessary. There is however, an effect of 
anisotropy which is quite apparent. Consider Fig. 10 
of Darnell et al.6 It is seen that the temperature TA at 
which the anisotropy changes sign for F ordering is not 
continuous across the Ts boundary into the AF region, 
but lies on this boundary from 200 to 350 °K before 
entering the AF region. This effect is ascribed to an 
anisotropy in the interplanar exchange energy. In 
Fig. 6 the free energy is represented schematically as a 
linear function of temperature. Although the actual 
functional dependence is more complex, this representa
tion serves this discussion. The anisotropy contribution 
is also exaggerated in proportion to the free energy so 
that it can be seen in the figure. The curves are labeled 
according to the orientation of the spins with respect 
to the crystallographic axis, parallel or perpendicular 
to c, and according to F or AF ordering. 

It has been shown by Darnell et al.% that the anisot
ropy energies for F and AF ordering, which arise from 
dipole-dipole and crystal-field effects, are so nearly the 
same that the small differences can be ignored. Thus, 
the first-order contribution to the magnetic anisotropy 
energy to be added to the free energy is the same for F 
and AF ordering, and anisotropy is continuous across 
the F/AF transition. However, in second order, the 
anisotropy mixes with the exchange energy producing 
an anisotropic exchange. The effect of an anisotropic 
exchange is shown in Fig. 6 by the difference in the 
temperature at which FAF1 and FF

X intersect and FAF11 

and FF11 intersect. The free energy at the intersection 
for parallel ordering is lower than that for perpendicular 
ordering by the anisotropy energy. For transition 
temperatures between the FAF1 and 2V intersection 
and the FAF11 and FF11 intersection, Fig. 6(a) results. 
Since the magnetic system follows the lowest free 
energy, the F/AF transition takes place with a con
comitant transition from positive to negative anisot
ropy. This situation is the condition for a transition 
between 200 and 350°K. 

Figure 6(b) represents the free-energy relations for 
F/AF transition temperatures rs>350°K. Here the 
FAF11 and i V intersection is at a temperature lower 
than the F/AF transition temperature Ts, and the 
anisotropy remains positive at T8. Figure 6(c) shows 
the situation for a low F/AF transition temperature, 

FIG. 6. Schematic representation of the effect of anisotropic 
exchange on magnetocrystalline anisotropy: (a) 200°K<r« 
<350°K, (b) r ,>350°K, (c) Fa<200°K. 

TS<200°K. Here the FF
!I and F F 1 intersection is at a 

temperature higher than T$ and the anisotropy changes 
from positive to negative before the F/AF transition 
occurs. 

Relative to the free energy for parallel orientation of 
spins, the free energy for perpendicular orientation is 

FAF,F1 = i7AF)F
II + AFAF,F+ir0. 

The differences between the Fl and F11 curves of Fig. 6 
are due to the temperature dependence of the (AF+iT) 
terms. Thus, the anisotropy of Mn2Sb must contain not 
only terms of the type described by Darnell et al. and 
designated here by K° but also an anisotropic exchange 
AF whose contribution cannot be distinguished experi
mentally in a given composition. 

These effects may be described more quantitatively 
by considering the variation of the free energy with the 
interplanar exchange p{c~cc). If it is assumed that only 
p is anisotropic, and that its anisotropy Ap=pn —pi is 
small, the first-order deviation in the free energy is 
obtained by differentiation with respect to p, giving 

<D~[,-(i)*-*r 
X | ( — ) CO$^+(P-}M*(CT--CC) costf> | — . (15) 

From Eq. (15), the magnitude of the anisotropy in the 
free energy AF depends on the spin ordering through 
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cos0. In the Kittel approximation, p ' = 0 . At the F /AF 
transition (CT—CC) = 0, and AF becomes independent of 
spin ordering for the F and AF configurations. Without 
the second-order exchange term p', the shift in the free 
energy is the same for both F and AF ordering, and 
behavior of the type described by Fig. 6(a) does not 
arise. Explicit calculation of A(F/R) from Eq. (15) 
shows that this contribution to the anisotropy of the 
AF state is smallest near Ts. Therefore, although there 
may be a second-order contribution to the temperature 
dependence of the anisotropy from an anisotropic p/R, 
no significant difference in the temperature at which 
the anisotropy changes sign in the F and AF states 
occurs. Similarly, an anisotropic p'/R suffers the same 
deficiencies. 

The most reasonable additional source of anisotropy 
is a variation Acc=cc

l—£c" of the critical lattice 
dimension with spin orientation, 

r p p' i 
X —I— (CT—CC) W2COS<£ACC. (16) 

LR R J 

Here, in the Kittel approximation p ' = 0 , the incremental 
changes in the free energy are in opposite direction for 
the F and AF states, i.e., this contribution to the 
anisotropy from Eq. (16) changes sign at Ts. Such 
behavior is just that which is necessary to account for 
the qualitative arguments summarized by Fig. 6. Thus, 
the first-order anisotropy constant may be expressed as 

K=K°+pm2Acc cos0, (17) 

where K° contains all other contributions to the anisot
ropy that are predominately independent of spin 
ordering, e.g., crystal-field anisotropy and contributions 
such as expressed by Eq. (15). 

In order to show that the additional contribution to 
the anisotropy in Eq. (17) is plausible, we compare the 
temperatures at which the anisotropy changes sign for 
the F and AF states. For the situation described by 
Fig. 6(a), anisotropy changes sign when exchange 
inversion occurs for a range in Ts of 150°. By use of the 
value of p/R found previously, Acc must be 4X10~4 A. 
Such a value for Acc is reasonable, unfortunately how
ever, it is difficult to detect directly. I t is significant, 
however, that such a small anisotropy in the exchange 
can play a dominant role in the magnetic anisotropy 
whenever magnetoelastic effects are present. 

SPIN FLOPPING 

The appearance of positive anisotropy in the anti-
ferromagnetic state suggests that spin-flopping experi
ments can be performed on the high-chromium Mn2Sb 
compositions. Such experiments have been reported by 

Flippen.9 Spin flopping has not been treated in an 
exchange-inversion material, and we outline briefly 
here the derivation of the spin-flopping conditions. 
Exchange inversion and spin flopping are quite different 
phenomena and should not be confused. Besides the 
obvious fact that exchange inversion can take place in 
the absence of an externally applied field, the most 
important feature is that the F /AF transition can be 
induced by an external field applied along any crystallo-
graphic direction. Spin flopping, however, can occur 
only when the anisotropy of the antiferromagnetic state 
is positive and when the external field is applied parallel 
to the anisotropy field. The spin configuration in the 
"spin flopped" state is canted, and this state is stable 
only in the presence of the applied magnetic field. The 
state is not stabilized when the external field is applied 
perpendicular to the anisotropy field or when the 
anisotropy is negative. 

The condition for an exchange-inversion transition 
has been treated thus far in the absence of external 
fields. However, an F /AF transition can be induced at 
temperatures below 7"s by application of a sufficiently 
strong magnetic field. The condition for an F /AF transi
tion in the presence of an applied field is given by 
equating the free energies for F and AF ordering, 
including the magnetic energy of the applied field, 

F(TT) = J F ( 0 ) + 2 H - M (18) 

from which is obtained the critical field for the F /AF 
transition 

m [ /pm\2 

Htw*=—\( — )p'+(cr-c.) 
Mo\\R/ 

*K('Ht[,-(ir)T- <19) 

I t can be verified that the derivative of Eq. (19) with 
respect to temperature and application of the magnetic 
form of the Clausius-Clapeyron equation gives Eq. (8). 
Also, it can be seen by direct substitution that the 
critical field vanishes when Eq. (5) is satisfied. 

The anisotropy has been ignored in Eq. (18). Anisot
ropic exchange introduces anisotropy in the critical 
field for the F /AF transition. If this were the only 
contribution to the anisotropy, the calculated value 
of Acc gives a critical field perpendicular to the c axis 
about 2000 G larger than the field applied parallel for 
a given temperature. When all sources of anisotropy are 
included, one would expect the anisotropy of the critical 
field to be proportional to the magnetocrystalline 
anisotropy field. Such anisotropy in the critical field is 
mentioned by Bierstedt10 in connection with his resis-

9 R. B. Flippen, J. Appl. Phys. 34, 2026 (1963). 
10 P. E. Bierstedt, Phys. Rev. 132, 669 (1963). 
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tivity measurements. More detailed unpublished data 
of Bierstedt show that the lower critical field is parallel 
to the easy direction of the anisotropy. Thus, the lower 
critical field changes from parallel to perpendicular to 
the c axis for compositions with 7\<200°K, the tem
perature below which the anisotropy changes sign 
before the exchange inversion occurs. 

The second-order quantity p'/R is small, and its 
inclusion contributes only additional complications. We 
shall neglect it in the succeeding calculation of spin 
flopping. Eq. (19) becomes 

m 
HAF/F==_^CT_Cc)t (20) 

Mo 

To obtain the spin-flopping conditions we again equate 
the free energies 

Jp(7r) = F(6>)+2H-M+2iTsin26>. (21) 

Here the solution of Eq. (21) is anticipated by assuming 
that H is directed along the anisotropy field of the 
antiferromagnetic state and that the "spin-flopped'' 
state is canted with the moments of the two sublattices 
making the same angle 6 with respect to the applied 
field. Equation (21) may be rearranged to give 

r /m2p(cT-Cc)+K \ 
cos0 cos30+( R-lJ 

L V p2w4 / 

# c
A F ' c Ml KR 

Xcosd+R = 0 , (22) 
p2w4 J p2w4 

where K is the anisotropy energy of the canted state. 
In order to obtain the critical field HC

AFIC for spin 
flopping, the equilibrium value of 6 must be determined 
by setting the torque equal to zero, dF/dp—0, where F 
is understood to contain the anisotropy and magnetic 
energies. Thus, the equilibrium condition 

l r K+2p(cT-cc)tn
2 -l 

cos30— 1 R 
2L 2p2m J 

Hew
cM KR 

XcosH #=0 (23) 
p2m4 p2w4 

must be satisfied simultaneously with Eq. (22). 
General solution of Eqs. (22) and (23) are complex, 

however, the essential features may be obtained by an 
approximate solution applicable to the experimental 
conditions of Flippen. Substitution of the field depend
ence of the F/AF transition and the observed critical 
field for spin flopping in Eq. (23) indicate that 0r=9O°, 
and cos30 can be neglected. Therefore, by solving 
Eq. (23) for cos0 and substituting into Eq. (22), the 

spin-flopping condition is obtained 

1 / f Tp2w4 -i 11/2 
# C A F / C = t 2 id p(cT-cc)m

2 

f /rp2w4 " i l 1 / 2 \ 
- i d i y | p(cr-cc)f»2 J . (24) 

When K is small compared to the magnetic strain 
p2m4/Ry the second term of Eq. (24) may be neglected 
for any value of (CT~ CC). Substitution of Eq. (20) gives 
the relation between the spin-flopping field and the field 
for exchange inversion 

# c A F / C = I R\ I \ + H*lAVM . (25) 

The anisotropy field of the canted state is found to be 
of the order of 1000 Oe or 2 X105 erg/cm3 from analysis 
of the data of Flippen. 

INTERMEDIATE STATE 

Darnell et al.Q and Austin et al.5 show that at low 
transition temperatures a third magnetic state appears 
as an interruption in the F/AF transition. The fore
going model does not account for such behavior 
principally for two reasons: First, effectively only 
nearest-neighbor interactions are contained in the 
model, and there is no competition between exchange 
interactions for spin direction that might give rise to a 
helical structure. Second, the model assumes a Bravais 
lattice and even if the details of the exchange inter
actions were included, only proper helical structures 
would result. The spin configuration of the intermediate 
state must be represented by a mixture of two 
configurations, 

S n = D + U cos(k-rn)+Vsin(k-rn), (26) 

a k = 0 ferromagnetic component and a helical com
ponent commensurate with the lattice periodicity given 
by kz—2ir/$c. For #<0.022 in the composition 
Mn2_xCrsSb the intermediate state is stable at absolute 
zero. In order to account for such a spin configuration, 
one must treat the actual crystal structure of Mn2Sb 
by the generalized Luttinger-Tisza method proposed 
by Lyons and Kaplan11 and Lyons et at.12 Preliminary 
calculations indicate that the spin eigenfunction given 
in Eq. (26) can lower the energy eigenvalues below the 
ferromagnetic and antiferromagnetic states. Details of 
this calculation will be published in a forthcoming 
paper. 

DISCUSSION 

The foregoing theory based on a highly simplified 
model of Mn2Sb demonstrates considerable success in 
accounting for the behavior of the F/AF transition in 

" D. H. Lyons and T. A. Kaplan, Phys. Rev. 120, 1580 (1960). 
12 D. H. Lyons, T. A. Kaplan, K. Dwight, and N. Menyuk, 

Phys. Rev. 126, 540 (1960). 
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Mn2_a;Cra;Sb. As pointed out by Bierstedt,10 this transi
tion is accompanied by hysteresis. For transitions near 
room temperature, the hysteresis is less than 1 deg of 
temperature. However, below about 200°K, hysteresis 
begins increasing sharply and reaches a value of about 
20° for a transition occurring near the temperature of 
liquid nitrogen. First-order transitions to the ferro
magnetic state in MnAs and the associated hysteresis 
have been investigated by Bean and Rodbell.13 They 
point out that the maximum hysteresis arises when the 
spin system remains at the initial minimum of the free 
energy, even though it is not the lowest minimum, until 
the free energy is "down-hill-all-the-way." The meas
ured hysteresis in MnAs is about 2/3 of this maximum 
value. 

13 C. P. Bean and D. S. Rodbell, Phys. Rev. 126, 104 (1962). 

I. INTRODUCTION 

IN a previous paper we have pointed out that the mag
netic susceptibilities of V3+-doped corundum may be 

used quite effectively for determining certain structural 
parameters of the crystals.1 For example, the trigonal 
field splitting of the lowest 37\ level of V3+:A1203 
was determined from the Van Vleck temperature-
independent susceptibility which was evaluated from 
the magnetic data in the temperature interval of 77-
295 °K, and the zero-field splitting of the ground state 
was obtained from the susceptibilities at low tempera-

f Supported by the U. S. Office of Naval Research. 
* Alfred P. Sloan Foundation Fellow. 
1 W. H. Brumage, C. R. Quade, and C. C. Lin, Phys. Rev. 131, 

949 (1963). 

This situation does not hold for the F/AF transition 
in Mn2_a;CriCSb. Kittel has shown that the maximum 
hysteresis in ar is AaT=2pm2/R. The free energy used 
in this treatment does not alter appreciably this 
expression. At room temperature, therefore, the 
expected hysteresis in Aar using p/R obtained pre
viously is of the order of 10~2 A, which may be trans
formed to a thermal hysteresis of about 50° by use of 
Fig. 2. This large discrepancy with the observed 
hysteresis indicates some very efficient mechanism 
nucleates the new state so that for transitions near 
room temperature the most stable state is nearly the 
equilibrium state. At low temperatures this nucleation 
mechanism must become less efficient, since the thermal 
hysteresis increases rapidly. A satisfactory model has 
not been obtained. 

tures. By combining these results with those of electron 
spin resonance experiments and optical spectra,2 the two 
trigonal field parameters and the spin-orbit coupling 
constant were estimated. The trigonal field parameters 
were found to be in reasonable agreement with the ones 
calculated from the empirical point-charge model. In 
this paper we shall report some magnetic measurements 
of Ni2+:CdS and Ni2+:ZnO. The susceptibility data 
make it possible to locate the first two excited states 
which hitherto have not been determined accurately.3 

2 D. S. McClure, J. Chem. Phys. 36, 2757 (1962). 
3 An estimation of the energy of the first excited state of 

Ni2+:ZnO has been made by intensity measurements. See R. 
Pappalardo, D. L. Wood, and R. C. Linares, Jr., J. Chem. Phys. 
35, 1471 (1961). 
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The magnetic susceptibilities of Ni2+-doped ZnO and CdS crystals have been measured along and per
pendicular to the trigonal crystalline axes over the temperature range of 28-500 °K. The magnetic suscepti
bilities of both crystals approach constant values at low temperature and decrease more rapidly with in
creasing temperature at r>60°K. An unusually large magnetic anisotropy is observed for Ni2+:ZnO. The 
non-Curie behavior can be explained on the basis that the ground state of Ni2+ is nonmagnetic {A i) and the 
temperature-dependent susceptibility arises mainly from the ions in the first two excited states {At and E). 
By fitting the theoretical susceptibilities to the experimental values, the spin-orbit coupling constant of 
Ni2+:ZnO is obtained as - 1 7 5 ± 2 5 cm"1 and the trigonal field splitting of the Ti [ 3 r (F) ] state (the lowest 7\ 
state) as 100±10 cm-1. The corresponding quantities for Ni2+:CdS are —170±10 cm -1 and 10db4 cm-1. In 
both crystals the A2 component of the Ti\}T(F)~] state lies below the E level. The large reduction of the 
spin-orbit coupling constant from the free-ion value indicates a rather strong covalency between the Ni2+ 

ion and the ligands. Combination of the trigonal splittings of the T\\}T\{F)'} state with those of T2[}Ti(P)~] 
observed in the optical spectra leads to a determination of the trigonal field parameters. The experimental 
values of the trigonal parameters are consistent with those calculated by using the point-charge model and 
assuming a local contraction of the lattice with a slightly larger contraction for the three anions off the 
trigonal axis than for the one on the axis. 


